
BOHEMIA INTERACTIVE
PRESENTS
Unity Tips & Tricks

Xeniya Vondrášková, Filip Vondrášek

Who are we?
We work at Bohemia Interactive as programmers

Our current project is Ylands, a sandbox game and a
platform for creating your own games.

Currently in early access, leaving EA in Q1 2019

What we are going to talk about
Unintuitive Unity APIs

Unity Garbage Collector

LINQ, foreach

Structure memory layout

Unity assembly reload

Data-oriented approach

Rendering millions objects

General Unity tips

GDS 2018 00/ Intro

Unintuitive Unity APIs

Camera API: Camera.main
The first enabled camera tagged as "MainCamera"

Camera.main is not a direct reference.

Every time you call Camera.main it uses FindGameObjectsWithTag internally and
returns the result. The result is not cached.

It happens multiple times per frame

Solution?
Cache it manually and track changes of the main camera.

GDS 2018 01 / Unity APIs

Particle system API
Almost all methods of the Particle System are recursive calls.

● iteration cycle through each child of the PS, calling
GetComponent<ParticleSystem>() on each of them and potential calling
of the original method on each child separately

Most-used API are affected by this behaviour: Start(), Stop(), Pause(), Clear(),
Simulate() and even IsAlive()

Could be a problem for the deep particles hierarchy, which is common for complex
effects

GDS 2018 02/ Unity APIs

Particle system API
Potential solution:

● All of these methods come with withChildren parameter, that is true by
default

● Cache your Particle Systems and manually iterate over them

GDS 2018 03/ Unity APIs

WaitForSeconds()
WaitForSeconds() sounds fairly self-explanatory

Beware of scaled time: given time is divided by Time.timeScale.

● In cases when you are tweaking the time scale value (for example, for slow
motion effects) or pausing the game using Time.timescale = 0.

It means for Time.timeScale = 0.5f your WaitForSeconds(1f) will actually wait
2 seconds. TimeScale = 0 causes WaitForSeconds coroutines not to run.

Alternative:
Use WaitForSecondsRealtime() instead, that uses unscaled time

GDS 2018 04/ Unity APIs

Unity Garbage Collector

Unity Garbage Collector
Part of today’s speech will be about memory allocations.

Unity uses Boehm GC algorithm:

1. Periodically sweeps through all objects stored on the heap.

2. Marks unreferenced objects for deletion.

GDS 2018 05/ Garbage Collector

Unity Garbage Collector
Doesn’t defragment the heap (non-compact).

The time needed for a GC pass is directly dependent on the size of the heap.
(non-generational)

From less than 1 ms to hundreds of ms

Stops the world during a sweep: GC spikes

GDS 2018 06/ Garbage Collector

GDS 2018 07/ Garbage Collector(Images are taken from the Unity Manual)

Source of the pictures on previous slide:
https://docs.unity3d.com/Manual/BestPra
cticeUnderstandingPerformanceInUnity4-

1.html

https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html

LINQ

Not enough space on the heap?
Run the GC (if it hasn’t run recently)

If we freed a gap large enough to store the new allocation, use it

Otherwise, expand the heap (usually double the size on most platforms)

The expanded space is not often shrunk if it’s empty

The address space is never returned to the OS

Keep your allocations at minimum

GDS 2018 08/ Garbage Collector

Coroutines: yield return new ...
yield return new WaitForSeconds(...) allocates every time you use it

Let’s write a helper class!

GDS 2018 09/ Garbage Collector

Coroutines: yield return new ...
public static class YieldUtil {

private static var _waits = new Dictionary<float, WaitForSeconds>();

public static IEnumerator WaitForSeconds(float seconds) {

WaitForSeconds rv;

if (!_waits.TryGetValue(seconds, out rv)) {

rv = new WaitForSeconds(seconds);

_waits.Add(seconds, rv);

}

return rv;

}

}

GDS 2018 10/ Garbage Collector

LINQ

LINQ
Easy to write, easy to read

Generates a lot of garbage!

● Even Microsoft advises on their official web not to use LINQ in Unity because
of heavy allocations

● https://docs.microsoft.com/cs-cz/windows/mixed-reality/performance-recom
mendations-for-unity

Some platforms (iOS) don’t work very well at all with LINQ

● Produces AOT/Jitter errors

Bad performance

GDS 2018 11/ LINQ

https://docs.microsoft.com/cs-cz/windows/mixed-reality/performance-recommendations-for-unity
https://docs.microsoft.com/cs-cz/windows/mixed-reality/performance-recommendations-for-unity

LINQ: Initialization
Let’s have a simple class containing only Vector3 Position called Player and a List of

100.000 instances of that class:

GDS 2018 12/ LINQ

LINQ: Initialization
public class Player

{

public Vector3 Position;

}

public void Init()

{

_players = new List<Player>();

for (int i = 0; i < 100000; ++i)

{

_players.Add(new Player(new Vector3(i, i, i)));

}

}

GDS 2018 13/ LINQ

LINQ: Selection
Consider these two snippets that pick the players whose x coordinate is an even number:

GDS 2018 14/ LINQ

LINQ: Selection
Consider these two snippets that pick the players whose x coordinate is an even number:

List<Player> evenPlayers = _players.Where(x => x.Position.x % 2 == 0).ToList();

GDS 2018 14/ LINQ

LINQ: Selection
Consider these two snippets that pick the players whose x coordinate is an even number:

List<Player> evenPlayers = _players.Where(x => x.Position.x % 2 == 0).ToList();

and :
List<Player> evenPlayers = new List<Player>();

int count = _players.Count;

for (int i = 0; i < count; ++i)

{

if (_players[i].Position.x % 2 == 0)

{

evenPlayers.Add(_players[i]);

}

}

GDS 2018 14/ LINQ

LINQ: Manipulation
Let’s have a code that changes the y coordinate to 0 for Players with an even x coordinate:

GDS 2018 15/ LINQ

LINQ: Manipulation
Let’s have a code that changes the y coordinate to 0 for Players with an even x coordinate:

IEnumerable<Player> evenPlayers = _players.Where(x => x.Position.x % 2 == 0);

for (var e = evenPlayers.GetEnumerator(); e.MoveNext();)

{

e.Current.Position.y = 0f;

}

GDS 2018 15/ LINQ

LINQ: Manipulation
and

int count = _players.Count;

for (int i = 0; i < count; ++i)

{

Player player = _players[i];

if (player.Position.x % 2 == 0)

{

player.Position.y = 0f;

}

}

GDS 2018 15/ LINQ

Foreach vs for

Foreach vs for
Foreach in most cases no longer generates garbage as it used to before Unity 5.6

Don’t iterate over IList<T>, IEnumerable<T>, that still has to do Boxing, which
allocates (enumerator allocation)

The problem with foreach is no longer garbage, but the performance

Let’s have the same Player class as in the LINQ part and a List<Player> of 100.000
objects

Let’s reset the Position variable in each object

GDS 2018 16 / Foreach vs for

Foreach vs for
foreach (Player player in _players)

{

player.Position = Vector3.zero;

}

GDS 2018 17 / Foreach vs for

Foreach vs for
foreach (Player player in _players)

{

player.Position = Vector3.zero;

}

int count = _players.Count;

for (int i = 0; i < count; ++i)

{

_players[i].Position = Vector3.zero;

}

GDS 2018 17 / Foreach vs for

Structure memory layout

Structure memory layout
public struct NPCData

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

GDS 2018 18 / Memory layout

Structure memory layout
unsafe

{

Debug.Log(sizeof(NPCData));

}

68

GDS 2018 19 / Memory layout

public struct NPCData

{

public Quaternion BodyOrientation;

public Quaternion HeadOrientation;

public Vector3 Position;

public int Health;

public int Damage;

public byte IsPositionCurrent;

public byte IsOrientationCurrent;

public byte HasEverTakeDamage;

public byte HasEverShot;

}

Structure memory layout

GDS 2018 20 / Memory layout

Structure memory layout
unsafe

{

Debug.Log(sizeof(NPCData));

}

56

GDS 2018 21 / Memory layout

Structure memory layout
12 bytes less - why?

The answer is memory layout

C# goes from top to bottom and puts the elements of structs into memory in that
order.

Every data type has a natural alignment, which must be respected in order to
permit the CPU to read and write memory effectively.

If it’s not aligned, instead of a simple read/write, the CPU has to read more blocks of
memory, mask and shift them and then OR them together.

GDS 2018 22 / Memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

→ public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

→ public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

→ public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

→ public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

→ public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

→ public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

→ public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

→ public int Damage;

public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

→ public byte HasEverShot;

public Quaternion HeadOrientation;

}

Structure memory layout

GDS 2018 23 / Memory layout

public struct WrongLayout

{

public Vector3 Position;

public byte IsPositionCurrent;

public Quaternion BodyOrientation;

public byte IsOrientationCurrent;

public int Health;

public byte HasEverTakenDamage;

public int Damage;

public byte HasEverShot;

→ public Quaternion HeadOrientation;

}

Structure memory layout

[StructLayout] attribute
[StructLayout(LayoutKind.Sequential/Explicit/Auto)]

Sequential: Default (from top to bottom)

Explicit: Define the layout yourself

● You can even implement unions with this!

Auto: Let the compiler decide

● You can no longer expose that struct to native code

GDS 2018 24 / Memory layout

Unity assembly reload

Unity assembly reload
All of you have probably seen something like this…

GDS 2018 25 / Assembly reload

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

Unity assembly reload
Unity (Mono) compiles a new DLL containing your game.

It serializes data from the running game to the HDD.

It replaces the old DLL with the new DLL.

It deserializes data from the HDD back to RAM.

GDS 2018 26 / Assembly reload

Only these are serialized
public, or [SerializeField] attribute

not static

not const

not readonly

a fieldtype that can be serialized

● this is a very limited subset

[Serializable] attribute used with structs and custom classes tells Unity that you
want that serialized, too

GDS 2018 27 / Assembly reload

However...
Serialization doesn’t work very well with custom classes

And it works even worse with custom classes that use polymorphism:

public Animal[] animals;

animals[0] = new Dog();

animals[1] = new Cat();

animals[2] = new Lizard();

After deserialization, we lose the specific children and only have 3 Animal objects

GDS 2018 28 / Assembly reload

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

A lazy, yet effective workaround
Since Unity 2018:

A lazy, yet effective workaround
#if UNITY_EDITOR

[InitializeOnLoad]

public static class StopEditorOnRecompile

{

static StopEditorOnRecompile()

{

if (EditorApplication.isPlaying)

{

EditorApplication.isPlaying = false;

}

}

}

#endif

GDS 2018 29 / Assembly reload

Data-oriented approach

Data-Oriented approach
Was introduced in Unity 2018.1 as an experimental package.

Contains three main aspects, which are supposed to greatly improve the

performance of the result product.

● Entity-Component-System (ECS): will take care of the memory layout

● C# Job System : multi-threading

● Burst compiler : highly optimized machine code.

GDS 2018 30 / Data-Oriented approach

Entity Component System
ECS is a new architecture suggestion. Relies on the idea that instead of the OOP

concept developers will start using a new Data oriented design.

Traditional approach:

● GameObjects + Components + MonoBehaviour

GDS 2018 31 / Data-Oriented approach

Minion

Transform
Collider
Rigidbody
Animator

ChasePlayer.cs
StealItems.cs

Entity Component System
In ECS: divide the whole structure of the game into

● Entities: “ID”

● Components: structs that contain only the instance data for an Entity.

Cannot contain methods.

● Systems: functionality/logic containers. Responsible for updating all Entities

with a matching set of components.

GDS 2018 32 / Data-Oriented approach

Entity Component System

GDS 2018 33 / Data-Oriented approach

Player

Minion

Enemy
Boss

Position

Position

Position

AI agent

AI agent

XP

HP

HP

HP

...

...

...

AI behaviour
system

Health system

XP system

Components
set filter:

HP

XP

Components
set filter:

Components
set filter:

AI agent
HP

Position

Previous slide inspired by:
https://software.intel.com/en-us/articles/g
et-started-with-the-unity-entity-compone
nt-system-ecs-c-sharp-job-system-and-bu

rst-compiler

https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler
https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler
https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler
https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler

C# Job System
Makes it possible to take advantage of multi-core processors: manages

multithreaded code by creating jobs instead of threads.

Job system relies on a set of working threads (one worker thread per logical CPU

core). It puts jobs into a job queue where a working thread will execute them later.

GDS 2018 34 / Data-Oriented approach

Burst compiler
New compiler technology on producing highly optimized code.

Based on the LLVM technology.

Burst compiler is relying on knowing, that all data has been set up the correct way

with the new Entity-Component-System and Job System.

GDS 2018 35 / Data-Oriented approach

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

Traditional approach

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

C# Job System

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

ECS + Burst

Rendering millions objects

Rendering millions objects
Default Unity renderer with instancing

● Too high CPU overhead (completely unusable)

Custom mesh baking

● What Ylands initially used

● Huge memory footprint

● Significantly affects loading times

● Need to manually rebake after every object change

GDS 2018 36 / Rendering millions objects

Rendering millions objects
Custom renderer

● Move workload to the GPU (great at parallel tasks)

● No Unity MeshRenderers, MeshFilters nor LodGroups

● Keep meshes and materials in custom data structures

GDS 2018 37 / Rendering millions objects

Custom Renderer
Upload object data to compute shader (transforms, colors, etc.)

Frustum culling and LODing in compute shader in parallel (1 thread per obj)

Build instance lists (objects with the same mesh/material combo)

Issue instanced indirect draw call for each instance list

GDS 2018 38 / Rendering millions objects

Custom renderer
Pros:

● Minimal CPU overhead because of greatly reduced draw call count

● Great GPU utilization

● GPU and CPU frame time up to 10x faster

● Scenes with millions of objects are possible

GDS 2018 39 / Rendering millions objects

Custom renderer
Cons:

● Very tricky to implement

● Quite a few workarounds and hacks

● Makes sense only with scenes with a lot of objects

GDS 2018 40 / Rendering millions objects

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

Several hundred thousand objects

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

Unity renderer

TITLE DIVIDER 1
LOREM IPSUM DOLOR SIT AMET, CONSECTEUR ADIPISCING

Our renderer

Short list of handy tricks

Short list of handy tricks
1. The Debug.Log method supports Rich Text markup tags

GDS 2018 41 / Handy tricks

Short list of handy tricks
2. Use go.CompareTag("tag") instead of go.tag == "tag"

GDS 2018 42 / Handy tricks

Short list of handy tricks
3. Mark your method with [ContextMenu] attribute to be able to call it with

context menu of the component

GDS 2018 43 / Handy tricks

Short list of handy tricks

4. Use [FormerlySerializedAs("PreviousName")] in case you want to change a

field name without losing its already serialized value.

○ It even supports multiple renames!

GDS 2018 44 / Handy tricks

Short list of handy tricks

5. Measure your potentially performance demanding code in the profiler with

"Profiler.BeginSample("MyCode:"); MyCode(); Profiler.EndSample();"

GDS 2018 45 / Handy tricks

GDS 2018 46 / Handy tricks

THANK YOU FOR LISTENING
xeniya.valentova@bistudio.com
filip.vondrasek@bistudio.com

https://data.bistudio.com/download/gds2018.pdf

Follow us on:

@bohemiainteract

facebook.com/BohemiaInteractive/

linkedin.com/company/bohemia-interactive/

